电池百科

公司新闻行业资讯电池百科常见问题
首页新闻资讯电池百科

锂离子电池的概述及工作原理

来源:互联网作者:Blue Taiyang浏览次数:1205发布时间:2022-04-20 20:35:00

锂离子二次电池的概况
锂离子电池的优点
1、高能量密度∶ 100 Wh/Kg以上,为镍镉电池的三倍,镍氢电池的两倍; 
2、电压平台高∶3.6 V,镍基电池为1.2 V;
3、低温下工作优∶在-20~60℃的温度范围内工作,低温下的工作优于其它电池;
4、低维护性∶没有记忆效应,无需定期放电,最理想的保存方式,就是在 40%充电后冷藏保存,可以保存达十年之久; 
5、低自放电率∶ 小于6%/月;
6、长循环寿命(>1000次,100%DOD); 
7、环保∶无重金属,无污染。
 
锂离子电池的缺点
1、安全性能问题∶需复杂的保护线路 ; 
2、易于老化∶存储的锂离子电池照样会容量衰竭; 
3、价格昂贵。
 
锂离子电池的种类
根据锂离子电池所用电解质材料不同,锂离子电池可以分为 
1、液态锂离子电池(lithium ion battery,简称为LIB) 
2、聚合物锂离子电池(polymer lithium ion battery,简称为 LIP)
相同点∶液态锂离子电池和聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。一般正极使用LiCoO2,负极使用各种碳材料如石墨,同时使用铝、铜做集流体。
区别∶主要区别在于电解质的不同,锂离子电池使用的是液体电解质,而聚合物锂离子电池则以聚合物电解质来代替,这种聚合物可以是"干态"的,也可以是"胶态"的,目前大部分采用聚合物胶体电解质。
 
 锂离子电池的工作原理
以LiCoO,体系的锂离子二次电池为例说明其工作原理。一般,锂离子二次电池是由正极、电解液、隔膜以及负极构成。充电时,正极中的锂离子从LiCoO,层状结构中脱出,Co元素的化合价由+Ⅲ升高到+Ⅳ,正极材料发生氧化反应,同时锂离子经过电解液迁移到电池的负极,在负极碳材料的层状结构内和碳化合生成 LiCx。电池在接上负载时,则两电极上所发生的反应分别为充电时发生反应的逆反应。隔膜位于正负反应电极之间,隔膜可以透过离子,但却不允许电子透过,同时当电池正负极发生一定程度的微短路时,隔膜还起到阻断保护作用。
 
锂离子电池的额定电压为3.6V。电池充满时的电压(称为终止充电电压)一般为4.2V;锂离子电池终止放电电压为2.5V。如果锂离子电池在使用过程中电压已降到2.5V后还继续使用,则称为过放电,对电池有损害。
锂离子电池比较骄贵。如果不满足其充电及使用要求,很容易出现爆炸,寿命下降等现象。因为锂离子电池对温度、过压、过流及过放电很敏感,所以所有的电池内部均集成了热敏电阻(监控充电温度)及防过压、过流、过放电保护电路。
 
 离子电池的充电原理
Iconst∶恒流充电电流; 
Ipre ∶预充电电流 
Ifull∶充满判断电流;
Vconst∶恒压充电电压; 
Vmin∶预充结束电压及短路判断电压
 
锂离子电池的充电过程分∶
预充电阶段 ;
恒流充电阶段-1C
恒压充电阶段4.1v-4.2v
 
预充电阶段
预充电阶段是在电池电压低于3V时,电池不能承受大电流的充电。这时有必要以小电流对电池进行浮充。
 
恒流充电阶段
当电池电压达到3V时电池可以承受大电流的充电了。这时应以恒定的大电流充电。以使锂离子快速均匀转移,这个电流值越大,对电池的充满及寿命越有利。
 
恒压充电阶段
当电池电压达到4.2V时,达到了电池承受电压的极限。这时应以 4.2V的电压恒压充电。这时充电电流逐渐降低。当充电电流小于 30mA时,电池即充满了。这时要停止充电。否则,电池因过充而降低寿命。恒压充电阶段要求电压控制精度为1%。依国家标准,锂离子电池要能在1C的充电电流下,可以循环充放电500次以上。依一般的电池使用三天一充。这样电池的寿命应在4年。
当没电的电池插在这种充电器上时,充电器即以最大的电流为电池充电。如果在锂离子电池最虚弱的低压时(低于2.5V)就以大电流冲击,将会严重损害电池的寿命。
另外,这类的充电器均为直接市电220V接入,转换为5V的低压直流。因为转换效率低下,会产生大量的热。热量直接叠加在了电池上,使电池温度过高,这对电池有很大损害
 
锂离子电池的充电方法
标准充电∶在环境温度20±5 ℃的条件下,以0.5C5A恒流充电,当电池端电压达到充电限制电压 4.20V时,改为恒压充电,直到充电电流小于10mA ,停止充电。
快速充电∶在环境温度20±5 ℃的条件下,以1C5A 恒流充电,当电池端电压达到充电限制电压 4.2V 时,改为恒压充电,直到充电电流小于10mA ,停止充电。
 
锂离子电池的放电特性
在较高放电率下(1.0 C以上),虽然放电电压有所下降,但截止到2.5V终止电压时的放电容量却降低很少。
 
锂离子电池的高温性能
电池充电结束后,将电池放入60±2 ℃ 的高温箱中恒温2h ,然后以1C5A电流恒流放电至2.75V。放电时间不小于54分钟。后将电池取出在环境温度 20±5℃ 的条件下搁置2h,电池外观无变形、无爆裂。
 
锂离子电池的低温特性
电池充电结束后,将电池放入-10±2 ℃ 的低温箱中恒温2h后,以0.5C5A电流恒流放电至终止电压2.75V。放电时间不小于1.8h。后将电池取出在环境温度20±5℃的条件下搁置2h , 电池外观无变形、无爆裂。
  
在环境温度20±C的条件下,以1C5A恒流充电,当电池端电压达到充电限制电压时,改为恒压充电,直到,直到充电电流为 10±5mA,停止充电;搁置0.5h - 1h ,然后以1C5A电流恒流放电至2.75V,搁置0.5h~1h ,再进行下一个充放电循环。直至连续两次放电容量小于 80%的1C5A放电容量,认为寿命终止,循环寿命不小
于300次。
 
锂离子电池的安全评估
利用恒定电流持续给电芯充电,设定固定电压上限。电芯内部在负极上产生螺离子枝晶 ,刺穿隔膜是通过该试验最大的威胁。
用小电阻的导线直接连接正负极,使电池形成超大电流回路,电池内部快速升温

新品展示查看更多
品类推荐
聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池圆柱形电池方形软包电池超薄锂电池异形电池方形电池组扣式电池聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池
相关资讯最新资讯查看更多
  • 电池组失效模式与影响分析

    电池组失效模式与影响分析FMEA是质量分析和可靠性分析都会用到的工具。FMEA是一个工具,它可以系统地分析产品和工艺过程中潜在的失效及其可能性评估其产生的危险,预测可能产生失效的区域以降低风险。当然这...

    2023-03-24

  • 锂电池可靠性设计和维护设计

    可靠性设计和维护设计与其他的工程领域一样,DFR和DFS(DesignforService,维护设计是非常重要的产品设计要素,这两个要素在电子器件安全保障的设计初期就必须与锂离子电池作为一个整体考虑。可靠性设计是一...

    2023-03-21

  • 锂离子电池

    锂离子电池基于德州大学奥斯汀分校JohnGoodenough教授的研究,索尼公司在1991年将锂离子电池商业化。迄今为止,离子电池已经成为世界上产量最大的电池。在2013年,离子圆柱形电芯生产量约6.6亿AH(安时),软...

    2023-02-21

  • 锂电池计算公式总结

    计算公式总结下面是本章所介绍公式的总结列表。基于这些公式,我们可以对设计电池进行基础的理论计算,从而对储能系统的性能有大致的了解。电压V计算公式:V=I×RV=电流I计算公式:I=V/RI2=P/RI=P/V...

    2023-02-20

  • 电网用电池系统的计算

    电网用电池系统的计算上述相同的计算、公式和过程可用于评估和调整用于大型电网或固定系统的基于电池的能量存储系统。大多数电池制造商面临的挑战是,从这些类型应用的信息需求的数量和水平通常比一个大型汽...

    2023-02-16

  • 将客户需求转换为电池组设计

    将客户需求转换为电池组设计经过上述讲解,我们已经对各类公式进行了简单的介绍。在锂离子电池组装工艺过程中,需要把这些公式放在一起使用。在此,我们简单地论述消费者对电池的要求。客户对电池的要求可以...

    2023-02-15

  • 计算锂电池充电电压

    计算锂电池充电电压最高充电电压等于串联的电芯的数目乘以每个电芯的最高充电电压(由制造商规定的):96cellsx4.2Vmax=403V最高充电电压最低放电电压与此计算类似,串联的电芯数目乘以电芯制作商规定的最低放...

    2023-02-15

  • 锂电池功率与能量的比值

    锂电池功率与能量的比值功率/能量比是许多客户和系统设计者用来快速评估某种技术对其应用的适用性的一个快速数字(译者注:即倍率,C-rate)。高功率应用,例如:12V启/停型汽车电池,其比功率的数值(w/kg)通常...

    2023-02-14

  • 最大持续放电电流

    最大持续放电电流系统可以提供的最大持续放电电流的计算方法为:电芯并联的数目(Np)乘以电流(Ic),然后再乘以最大倍率(CMax)。另外一种计算方法,是从制作商的数据清单里得到电芯的最大放电电流,然后再乘以...

    2023-02-13

  • 计算电池系统功率

    计算系统功率考虑到这些基本的计算,我们也可以深入挖掘并了解系统能提供多少能量。除了上面所示的基于欧姆定律的公式外,在计算中也可以使用这几个公式来计算功率和使用功率(以瓦特计算)。在这种情况下,我...

    2023-02-10

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 欧姆定律和基本的电池计算

    欧姆定律和基本的电池计算虽然电池组设计需要用到很多公式,但是欧姆定律是最重要、最基础的公式。欧姆定律描述的是电压、电流以及电阻三者之间的关系由于电压和电流是电池中为数不多的可以测量的物理量(可...

    2023-02-07

  • 锂聚合物电池寿命定义

    锂聚合物电池寿命定义在环境温度下,电池以0.2C充电,电池端电压达到充电限制电压时改为恒流充电,直到充电电流小于20mA时停止充电,搁置0.5-1,再去以0.2C电流放电至终止电压.放电截止后,再搁置0.5~1H.再...

    2022-06-06

  • 锂聚合物电池禁止事项注意

    锂聚合物电池禁止事项:1.不可将电池置于火中。2.不可将电池充电器正负极反接。3.不可将电池短路(P+、P-)。4.避免电池过度冲击和震荡。5.不可拆解或扭曲电池。6.不可浸入水中。7.不可将该电池与其他种类和...

    2022-06-06

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06

  • 锂聚合物电池鼓包胀气的原因

    锂聚合物电池鼓包胀气的原因:聚合物锂离子电池芯采用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外...

    2022-02-06

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06